Atomic level computational identification of ligand migration pathways between solvent and binding site in myoglobin.

نویسندگان

  • Jory Z Ruscio
  • Deept Kumar
  • Maulik Shukla
  • Michael G Prisant
  • T M Murali
  • Alexey V Onufriev
چکیده

Myoglobin is a globular protein involved in oxygen storage and transport. No consensus yet exists on the atomic level mechanism by which oxygen and other small nonpolar ligands move between the myoglobin's buried heme, which is the ligand binding site, and surrounding solvent. This study uses room temperature molecular dynamics simulations to provide a complete atomic level picture of ligand migration in myoglobin. Multiple trajectories--providing a cumulative total of 7 micros of simulation--are analyzed. Our simulation results are consistent with and tie together previous experimental findings. Specifically, we characterize: (i) Explicit full trajectories in which the CO ligand shuttles between the internal binding site and the solvent and (ii) pattern and structural origins of transient voids available for ligand migration. The computations are performed both in sperm whale myoglobin wild-type and in sperm whale V68F myoglobin mutant, which is experimentally known to slow ligand-binding kinetics. On the basis of these independent, but mutually consistent ligand migration and transient void computations, we find that there are two discrete dynamical pathways for ligand migration in myoglobin. Trajectory hops between these pathways are limited to two bottleneck regions. Ligand enters and exits the protein matrix in common identifiable portals on the protein surface. The pathways are located in the "softer" regions of the protein matrix and go between its helices and in its loop regions. Localized structural fluctuations are the primary physical origin of the simulated CO migration pathways inside the protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin.

Myoglobin (Mb) is perhaps the most studied protein, experimentally and theoretically. Despite the wealth of known details regarding the gas migration processes inside Mb, there exists no fully conclusive picture of these pathways. We address this deficiency by presenting a complete map of all the gas migration pathways inside Mb for small gas ligands (O2, NO, CO, and Xe). To accomplish this, we...

متن کامل

Molecular Modeling Studies on Vinblastine Binding Site of Tubulin for Antimitotic agents

Medicinal chemistry depends on many other disciplines ranging from organic chemistry andpharmacology to computational chemistry. Typically medicinal chemists use the moststraightforward ways to prepare compounds. The validation of any design project comes from thebiological testing.Studies of the binding site of vinblastine by a single cross—linking experiment identified it asbeing between resi...

متن کامل

Coupling of protein relaxation to ligand binding and migration in myoglobin.

Protein relaxation, ligand binding, and ligand migration into a hydrophobic cavity in myoglobin are unified by a bounded diffusion model which produces an accurate fit to complex ligand rebinding data over eight decades in time and a 160 K temperature range, in qualitative agreement with time-resolved x-ray crystallography. Protein relaxation operates in a cyclic manner to move the ligand away ...

متن کامل

Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction.

A time-resolved Laue X-ray diffraction technique has been used to explore protein relaxation and ligand migration at room temperature following photolysis of a single crystal of carbon monoxymyoglobin. The CO ligand is photodissociated by a 7.5 ns laser pulse, and the subsequent structural changes are probed by 150 ps or 1 micros X-ray pulses at 14 laser/X-ray delay times, ranging from 1 ns to ...

متن کامل

Role of the active-site solvent in the thermodynamics of factor Xa ligand binding.

Understanding the underlying physics of the binding of small-molecule ligands to protein active sites is a key objective of computational chemistry and biology. It is widely believed that displacement of water molecules from the active site by the ligand is a principal (if not the dominant) source of binding free energy. Although continuum theories of hydration are routinely used to describe th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 27  شماره 

صفحات  -

تاریخ انتشار 2008